What can it do for you?

AUTOMATED IMAGE STITCHING, GEL/BLOT ANALYSIS, MORPHOMETRY, QUANTITATIVE REGIONAL AUTORADIOGRAPHY
FLUORESCENCE IMAGING, STEREOLOGY, GRAIN & CELL COUNTING, WHOLE BODY AUTORADIOGRAPHY
State of the Art Image Analysis and Quantification

MCID™ is a powerful imaging platform, incorporating many years of development, MCID™ is in use at hundreds of the world’s most top research laboratories. In addition to functions for image editing, annotation, enhancement and archiving, MCID™ offers fully configured functions for fluorescence microscopy, automated image stitching, quantitative and whole-body autoradiography, gel/blot analysis, grain & cell counting and stereology. The system supports a broad variety of CCD cameras, automated microscope stages, shutters, filter wheels and other peripherals. An object orientated macro editor simplifies operation in repetitive tasks.

MCID™ is ideal for a core imaging facility. It is a simple matter to create a distributed image analysis environment in which you can analyse images at any computer. In this unified imaging environment, the software tools need only be learned once, and exchange of images and data between systems is completely transparent.

Applications Overview

Automated Imaging Stitching

Produce ultra-high resolution images with any camera and visualize structures of interest within a larger biological context. Motor stage and Z-axis controls are integrated with positioning, focusing, convolution / deconvolution and edge-matching algorithms to create seamless montages of any size. Define the region of interest and montage creation is automatic. Automated Image Stitching is an optional software module for

Quantitative Regional Autoradiography

Functions include precise calibration to radiolabel standards, with curve fitting, extrapolation (improves precision of calibration extremes) and algorithms that make data comparable across detection technologies (e.g. film and phosphor plate). Use for regional receptor binding and functional mapping. Operational equations for cerebral glucose utilization, protein synthesis rates, and blood flow are included.

Whole Body Autoradiography

Accepts digital images from any phosphor imager, or film images from cameras and scanners. Automated sampling tools simplify data gathering. Excellent support for very large image files.

Fluorescence Imaging

There is support for monochrome and color integrating cameras, and for ultra-low light cameras. Extensive image fusion functions (including flexible adjustment of color, intensity, and transparency of each discrete fluorochrome) combine images of different fluorochromes. Digital confocal functions deconvolve using nearest-neighbour or no-neighbor algorithms. Image-stitch fluorescence images. Use any of the MCID measurement functions to quantify fluorescence signal.
Gel/Blot Analysis

Acquire, annotate, archive and print using almost any gel scanner or CCD based acquisition system. Analyse lanes or thin layer chromatographs. Includes linear and nonlinear calibration in two dimensions (e.g. to molecular weight and pH), corrections for gel artifacts, automated and manual lane and peak detection, and flexible baseline subtraction.

Grain & Cell Counting, Particle Analysis

This generic counting mode is applicable to cells, grains and other discrete objects. Valid targets are discriminated from background using intensity, color and spatial criteria. Image transformation and combination functions assist in discriminating difficult targets (e.g. particulates overlapped with cells).

Stereology

Includes commonly used procedures and parameters for unbiased stereology. A semi-automated optical fractionator for unbiased cell counting is included (requires a motorised X,Y,Z microscope stage). Stereology is an optional module for MCID.

Easy Intuitive Interface

![Image of Easy Intuitive Interface]
MCID is a modular applications based acquisition and image analysis software. MCID is easily optimized and configured for single applications based on specific user requirements.

Display
MCID uses a single monitor, and displays the acquired image and the analysis data in the same window. Therefore, we recommend a high resolution display, typically 1280 x 1024 pixels x 24 bits (16 million colors). Larger monitors at 1600 x 1200 pixels are also available. MCID can also support dual view technology via a suitable graphics card.

Independent image channels
MCID offers multiple, independent image channels. Each channel can contain a discrete, calibrated image. Use the multiple image channels to align stained sections and autoradiographs, or to display images acquired at different fluorescence wavelengths.

Image input / saving functions
MCID accepts and exports images in a variety of formats, including monochrome and color TIFF, MCID, and in the native formats of many cameras and scanners. For other file formats, a general-purpose image format editor is supplied as standard. You can easily create your own image file format specifications, and integrate them within MCID.

Image Manipulation
Images can be of any size. Use MCID to analyze, edit, trim, process, and publish large images.

Image acquisition
MCID supports a number of analogue video CCD and digital CCD cameras. See our website for up to date driver information.

Additional hardware
MCID supports motorized microscope stages and Z-axis drives (LEP, PRIOR, ASI & Marzhauser & the OASIS4i controller), as well as shutters and filter wheels (LEP, Prior and Sutter), for controlling illumination and excitation wavelengths, especially for fluorescence applications.

Calibration
Calibrate images to external density and spatial standards. Nonlinear calibrations (e.g. molecular weight) fully supported.

Data gathering
Powerful and flexible set of data sampling tools, including automatic tools. Data are automatically saved to a disk file, and can be exported via the clipboard or in Excel, ASCII or Lotus formats.
Image fusion
Collect any number of discrete fluor images. Fusion functions create 24-bit color images. Functions range from simple addition to weighted addition with layer-specific transparency.

Image processing and editing
Apply filters, logical operators, image arithmetic. Edit images to remove artifacts, or to create image montages.

Easy report generation
Report generator creates summary reports including numerical data, profile graphs, and image. Print reports with one command.

Gel/Blot analysis
Nonlinear calibrations in X and Y dimensions.
1D mode.
1D mode for TLC.
Corrections for bent or stretched lanes, smiling.
Vertical, horizontal, rotatable, and user-traced lane definition tools.
Display and analyze multiple lanes, simultaneously, or one at a time.
Manual or automatic peak detection.
Manual or automatic baseline correction.

Powerful profile tools
Vertical, horizontal, rotatable, and user-traced lane definition tools.
Display and analyze multiple profiles, simultaneously, or one at a time.
Zoom in on any portion of the profile for high-resolution display.

Fully automatic target detection
For grain counts, and other feature distribution analyses, fully automated target detection is supported. Multiple density thresholds can be combined with logical criteria (e.g. area) to separate targets from background.

Sampling tools
Sampling tools are probes used to gather data from images. Tools can be sized and rotated by the user.
The MCID Densitometry System has served thousands of scientists for more than 15 years. The system includes calibrations and corrections which are easily applied to yield precise quantitative and semiquantitative data. The MCID Densitometry System can be used with a wide variety of cameras, scanners and phosphor images.

Features

- Calibrate to any concentration or density standards
- Automatic data optimization functions include thresholding and variance based pixel selection
- Operational Equations convert optical density values to rates of local cerebral glucose utilization, protein synthesis, or blood flow
- Real time alignment of autorad with NSB or stained section
- Automated sampling tools
- Multiple image operations

Benefit

- Fully quantitative analysis
- Advanced measurement of clipped and saturated pixels for improved data quality
- A complete solution for densitometry
- Easy redirected sampling and subtraction of NSB
- Use one software package for all your densitometry needs
- Fast and easy
- Simple application to multilabel studies

Digital Densitometry System

DEN-MCB-001 includes:

- MCID Core Software
- QIMAGING QICAM Mono 12bit Camera
- Macro Accessory Package

Software and Hardware (minimum) Requirements:

- Windows® 2000 or Windows XP
- Pentium® IV, 512MB RAM and a 100MB hard drive
MCID acquires, annotates, archives, prints and quantifies images of your gels and blots. Use MCID as a simple archival system or take advantage of the extensive list of analysis functions. Digitize your specimens with any input device, including scanners, and video or digital cameras.

GEL & BLOT ANALYSIS SYSTEM

Features

- Analyse radiolabelled, stained, luminescent and fluorescent gels and blots
- Includes linear and non-linear calibrations
- Apply corrections for gel artifacts
- Automated and manual lane and peak detection
- Automated baseline subtraction
- Full annotating, viewing and editing functions

Benefit

- Sample versatility
- Calibrate to molecular weight and pH
- Improved data quality
- East to use
- Simple background corrections for improved data quality
- All your gel documentation needs in one package

Digital Gel Blot System

GBD-MCB-001 includes:

- MCID Software
- CoolSNAP CF™ Mono
- Macro Accessory Package

Software and Hardware (minimum) Requirements:

- Windows® 2000 or Windows XP
- Pentium® IV, 512MB RAM and a 100MB hard drive
The MCID fluorescence system captures, analyzes and manipulates fluorescence images with ease. You can easily measure label intensity, combine discrete fluoros, use for co-localization and clarify using digital deconvolution. The MCID Fluorescence System supports video and digital cameras, color or mono, standard, cooled or cryogenic.

Features
- Broad range of cameras supported
- Extensive image fusion functions
- Image registration and alignment
- Digital deconvolution algorithms
- Calibration and normalization functions
- Computer control of filter wheels and shutters
- Works with any microscope and a variety of motor stages

Benefit
- Versatility in image acquisition by application
- Visualize co-localization of labels, with absolute control of image quality
- Compensate for possible filter cube misalignment
- Remove out-of-focus fluorescence for improved image quality
- Accurate fluorescent signal quantification
- Versatility and ease of use
- Use with existing equipment

Digital Fluorescence Imaging System
- **FLR-MCB-001** includes:
 - MCID Software
 - QICAM Mono or Color
 - Optional Filter wheels motorised stages etc.

- **FLR-MCB-002** includes:
 - MCID Software
 - QICAM RETIGA Mono or Color
 - Optional Filter wheels motorised stages etc.

Software and Hardware (minimum) Requirements:
- Windows® 2000 or Windows XP
- Pentium® IV, 512MB RAM and a 100MB hard drive
The MCID Basic Image Stitching System automatically merges multiple fields of view into a single, large image. The montage is seamless, sharply focused and has high resolution. Create spectacular, high quality images. Ideal for visualizing details within a larger biological framework and for high quality publication.

OPTIMIZED FOR THE AUTOMATED CREATION OF ULTRA-HIGH RESOLUTION DIGITAL IMAGES TO ENABLE VISUALIZATION OF BIOLOGICAL STRUCTURES OF ANY SIZE.

Features
- Automated alignment and autofocus algorithms
- Color and shading error corrections
- Automated image combination in the Z axis
- Fast, unattended image acquisition
- Image stitching within any modality, fluorescence, luminescence, bright field
- Full functions for viewing, analysing, printing, and managing large images
- Use with any microscope

Benefit
- Seamless, sharply focused images
- No intensity or color variations between images
- Combines any number of focal planes into one
- Montage extremely large images (greater than 200 fields of view)
- Image any specimen labelled or unlabeled
- A complete solution for large images with the ability to create publication quality images
- Use existing equipment

Digital Image Stitching System example 1
MCD-ISA-001 includes:
- MCID Software
- CoolSNAP CF™ Mono or Color Camera
- Image Stitching Module
- XYZ Motorised Stage (Prior)

Digital Image Stitching System example 2
MCD-ISA-002 includes:
- MCID Software
- CoolSNAP ES™ Mono or Color Camera
- Image Stitching Module
- XYZ Motorised Stage (Prior)

Software and Hardware (minimum) Requirements:
- Windows® 2000 or Windows XP
- Pentium® IV, 512MB RAM and a 100MB hard drive
- Turnkey package with pre-configured PC available on request
The MCID Stereology System applies commonly used stereological measures including volume, surface area, length and counts to your images. Integrate stereology within the broad function set of your MCID image analyzer. The MCID Stereology System is available with a selection of cameras and motorized microscope stages & focus drives.

Features
- Includes commonly used stereology measures
- Controls motorized microscope stage
- Motorized Z-axis control
- Region definition at low magnification
 - Automatic sampling at high magnification
- Computer generated sampling grids and frames
- Flexible target detection algorithms
- Automated data logging
- Compatible with any microscope

Benefit
- Flexible measurement parameters
- Implements automated optical fractionator
- Automates serial image acquisition
- Easy and efficient positioning
- Automated grid placement
- Accurate and automated target detection
- Simplified data management
- Use existing equipment

Digital Stereology System

STE-MCB-001 includes:
- MCID Software
- CoolSNAP CF™ Mono Camera
- Stereology Module
- Optional motorised XYZ stages

Software and Hardware (minimum) Requirements:
- Windows® 2000 or Windows XP
- Pentium® IV, 512MB RAM and a 100MB hard drive
MCID Analysis
MCID Analysis has been designed as an image analysis software solution for offline analysis of images. MCID Analysis is ideal for any images where image capture is not required. MCID Analysis includes all the powerful analysis tools of MCID but without the hardware and capture support. MCID Analysis is an ideal solution for Phosphor Imagers and other capture systems.

MCID Analysis Server Edition
MCID Analysis Server Edition is based on concurrent user licensing (min 3 concurrent users). The Server edition with concurrent licensing offers a cost effective way of providing powerful offline analysis software to your departmental or company wide user base.

Software and Hardware (minimum) Requirements:
• Windows® 2000 or Windows XP
• Pentium® IV, 512MB RAM and a 100MB hard drive

• Turnkey packages with pre-configured PC’s available on request

Distribute a powerful suite of analysis tools across your company / departmental network, easy and cost effective.